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Abstract. New boundary bound states (BBS) are found for an integrable model with magnetic
impurities located at the edges of an open Heisenberg spin chain. These bound states carry the real
energy and are formed by three or five imaginary modes of the rapidities. These imaginary modes
of the rapidities give non-zero antisymmetric wave functions and the moments of the centres of the
bound states are zero. This indicates that these bound states result from the magnetic impurities and
are localized at the edges of the correlated system. Kondo screening occurs for the antiferromagnetic
spin chain with ferromagnetic-impurity–electron exchange interaction.

Magnetic impurities in one-dimensional (1D) strongly correlated electron systems or quantum
spin chains have been the focus of intense investigation. These strongly correlated systems
can be described in terms of a Luttinger liquid [1], and the behaviour of the impurities in
these 1D quantum systems is rather different from their behaviour in a Fermi liquid [2, 3].
The availability of nonperturbative techniques has supplied us with a means for detailed
understanding of the relevant physics, and some very interesting phenomena have been
revealed, such as the Kondo problem [4, 2] and the pinning of bound states in low-dimensional
strongly correlated electron systems and quantum spin chains. Experimentally, magnetic
impurities implanted in carbon nanotubes or quantum wires and analogical phenomena (for
example, x-ray boundary effects, metal point-contact spectroscopies, etc) have renewed interest
in investigations of these problems.

The quantum inverse scattering method (QISM) and the Bethe ansatz (BA) techniques are
very effective tools for the study of magnetic impurities in a 1D quantum system. These
methods have been used successfully to deal with the Kondo impurity in a free electron
host, the magnetic impurities in spin chains and the mixed valent behaviour of hybridization
(Anderson-like, with hybridized impurity and host wave functions) [5–7]. Recently, the
properties of magnetic impurities in correlated electron hosts have been studied in a series of
very interesting papers [8, 9].Periodicboundary conditions were imposed on the electron host
and spin chains for all these cases. Kane and Fisher investigated a 1D repulsive interacting
system in the presence of a potential barrier and pointed out that it corresponds to a chain
disconnected at the barrier site at low energy scales [10]. This can be effectively described
by openboundary conditions, which have been extensively investigated using the boundary
conformal field theory [11] and the BA methods [12, 13]. Zvyagin found that the low-energy
magnetic behaviour of an impurity in a chain with periodic boundary conditions and a chain
with open boundary conditions coincides up to mesoscopic corrections of order ofL−1, whereL
is the length of the system [9]. We know that several methods have been used for introducing
impurities into the integrable models of correlated electrons and quantum spin chains with
the openboundary conditions. The first method for the construction of impurity models
is dependent mainly on the idea that the spectral parameters in the scattering matrix of the
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model rely on the differences in the particles’ rapidities. This method has been used by
Eckle, Punnoose and Römer [7] to create the impurity model of 1D quantum lattice gases with
periodic conditions, where the integrable condition continues to be satisfied under an arbitrary
local shift of the related parameter (see, for example [14]). The second method depends on
the fact that the scattering matrix of the bulk of thet − J model relies on the tangent (or
cotangent) functions of the half moments of the electrons [15]. The interesting thing is that the
Hamiltonian corresponding to the magnetic impurities has a simple and compact form [16],
which is different from its form in the open Hubbard impurity model [17]. The boundary
scattering matrix between the impurity and the electron can be factorized into two terms: one
is similar to theR matrix and the other is similar to the inverse of theR matrix with an inverse
spectral parameter, as correctly obtained by Zvyagin and Johannesson in their very interesting
study [18]. Zvyagin and Johannesson revealed the existence of a hidden Kondo effect driven by
forward electron scattering from the impurity related to this property of the boundary scattering
matrix.

As is well known, bound states can be formed for strongly correlated electron systems
and quantum spin chains within the charge or spin sectors, and they are very important for the
determination of the thermodynamical and low temperature properties of the system. Despite
the success of the QISM and BA approaches to the investigation of the magnetic impurities in
a correlated system, it is not very clear whether the impurities contribute to the bound states of
the strongly correlated system withopenboundary conditions. In this letter, we discuss this
problem in detail.

In general, a bound state can be formed by several complex rapidities of particles, such
as charges or spins. The total energy and the total moments of these complex modes should
be real. Under open boundary conditions, the rapiditiesuj of the charges or spins should
satisfy also thatuj 6= ±ul whenj 6= l. Otherwise, the wave function is zero, which means
that formation of a bound state is forbidden. When the complex rapidities form a bound
state, the above three conditions should be satisfied for the correlated system under the open
boundary conditions. For clarity we focus here on the case of the quantum Heisenberg model.
When the two impurities with arbitrary spins are coupled to this open quantum spin chain, the
Hamiltonian of the system can be written as

H = J

2

N−1∑
j=1

Eσj · Eσj+1 + JL Eσ1 · ESL + JR EσN · ESR (1)

whereEσj are the Pauli matrices andESL,R are the impurity moments with arbitrary spinsSL,R.
The site number of the bulk isN . JL,R are two arbitrary real constants which describe the
coupling between the bulk, and the impurities and can be parameterized as

JL,R = J(
SL,R + 1

2

)2 − c2
L,R

(2)

with the arbitrary constantscL,R. This Hamiltonian can be diagonalized using the standard
Bethe ansatz scheme. The eigenvalue of the energy of this impurity system is

E(λ1, λ2, . . . , λM) =
M∑
j=1

−J
λ2
j + 1

4

+
∑
l=L,R

JlSl +
J (N − 1)

2

with the following Bethe ansatz equation:(
λj + i

2

λj − i
2

)2N ∏
l=L,R

∏
r=±1

λj + i (Sl + rcl)

λj − i (Sl + rcl)
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=
M∏

l=1(l 6=j)

∏
r=±1

λj + rλl + i

λj + rλl − i
. (3)

Now we study the boundary bound states in detail for the above Heisenberg impurity model.
From equation (2) we know that−cL,R is equivalent tocL,R because they give the same
Hamiltonian (equation (1)). So, without losing generality, we restrict the parameterscL,R to
non-negative values in the following discussion.

When the coupling in the bulk is antiferromagnetic(J > 0) and the coupling between the
bulk and the impurity is ferromagnetic, the system has the following boundary bound states
(BBS):

λ3,1 = i(SL,R − cL,R) (4)

λ3,2 = − i

2
(SL,R − cL,R − 1) (5)

λ3,3 = − i

2
(SL,R − cL,R + 1) (6)

whereSL,R + 1/2< cL,R < SL,R + 1. These two BBS, one BBS for each end (L andR) of the
chain, are formed by the three imaginary modes ofλ. They carry the energy

E
(3)
L,R =

12J
[
3(SL,R − cL,R)2 − 2

][
4(SL,R − cL,R)2 − 1

] [
(SL,R − cL,R)2 − 4

] . (7)

The moments of the centres of the BBS are
∑3

j=1 λ3,j = 0. This means that these kinds of
bound state are localized at the edges of the system. Of course, the energy and the moments of
the centres of the BBS are all real and the spin rapidities satisfyλ3,1 6= ±λ3,2 6= λ3,3 6= ±λ3,1,
which ensures that the antisymmetric wave functions of the system are not zero. Therefore,
these BBS satisfy all the physical demands. The BBS for the three imaginary modes can also
be obtained for the Heisenberg impurity model withSL,R + 1/2< cL,R < SL,R + 1 by making
the transformationsλ3,j →−λ3,j (j = 1, 2, 3) in the relations (4–6). They also carry energy
in the form described by equation (7).

When the coupling in the bulk is antiferromagnetic(J > 0) and the coupling
between the bulk and the impurity also falls into the antiferromagnetic regime, the above
BBS (equations (4–6)) with the three imaginary modes are formed under the condition
1/3 + SL,R < cL,R < 1/2 + SL,R. The corresponding imaginary modes with the
transformationsλ3,j → −λ3,j (j = 1, 2, 3) are also the BBS in this case. The energy
expression (7) does not change the forms and the moments of the centres of the bound states
are also zero. By taking the logarithm of the Bethe ansatz equation (3) and introducing the
distribution functions of the spin rapidities, we can get the integral equations of the impurity
model for the ground state. Thus we find that the self-magnetization of the ground state is
SL +SR − 1 for the two up impurity spins, or 1− SL− SR for the two down impurity spins, or
± (SL − SR) for the one up and one down impurity spins. A similar procedure gives the result
that the self-magnetization of the ground state is also± (SL − SR) when the coupling in the
bulk is antiferromagnetic but the coupling between the bulk and the impurity is ferromagnetic.
When the parameterscL,R, which describe the coupling between the impurities and the bulk,
satisfySL,R < cL,R < SL,R + 1/3, there exist the BBS formed by the three imaginary modes
as described by relations (4–6) and the BBS formed by the transformationsλ3,j → −λ3,j

(j = 1, 2, 3). They carry the energy described by equation (7) and have the zero moments of
the centres of the BBS. In this case, the coupling between the bulk and the impurities is in
the antiferromagnetic regime if the exchange interaction in the bulk is antiferromagnetic also.
Furthermore, in the case whereSL,R < cL,R < SL,R + 1/3 there are two bound states (one for
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each end of the chain) formed by the following five imaginary modes ofλ

λ5,1 = i(SL,R − cL,R) (8)

λ5,2 = i(SL,R − cL,R + 1) (9)

λ5,3 = i(SL,R − cL,R − 1) (10)

λ5,4 = − i

2
(3SL,R − 3cL,R − 1) (11)

λ5,5 = − i

2
(3SL,R − 3cL,R + 1). (12)

They carry the energy

E
(5)
L,R =

20J
[
7(SL,R − cL,R)2 − 6

][
9(SL,R − cL,R)2 − 4

] [
4(SL,R − cL,R)2 − 9

] . (13)

The moments of the centres of the above bound states formed by the five imaginary modes of
λ are

∑
j=1,2,...,5 λ5,j = 0. Therefore, they localize at the two edges of the Heisenberg spin

chain andλ5,j 6= ±λ5,l if j 6= l (j, l = 1, 2, . . . ,5), which ensures that the system has a
non-zero antisymmetric wave function. Similar to the case of the BBS of the three imaginary
modes, the transformationsλ5,j → −λ5,j (j = 1, 2, . . . ,5) also give the boundary bound
states of the system; they do not change the expression of the energy and the moments of the
centres of the bound states are also zero. Using the method mentioned above, we find that the
self-magnetization of the model is the same as for the situation 1/3+SL,R < cL,R < 1/2+SL,R.
The above BBS satisfy the three conditions for the complex modes.

In the following section, we describe simply the self-magnetization and the BBS of the
ferromagnetic Heisenberg impurity model. By solving the Bethe ansatz equations in the
thermodynamic limit, we find that the self-magnetization of the system isSL + SR + N/2
when the coupling between the impurities and the bulk is also ferromagnetic. Otherwise, the
self-magnetization is−SL−SR +N/2 for the antiferromagnetic exchange interaction between
the impurities and the bulk. When one impurity has a ferromagnetic interaction with the bulk
and another impurity has an antiferromagnetic interaction with the bulk, the self-magnetization
of the system has the form± (SL − SR) + N/2. WhenSL,R + 1/2 < cL,R < SL,R + 1, the
system has the BBS formed by the three imaginary modes (equations (4–6)) and the BBS
carry the energy given by equation (7). If the transformationsλ3,j →−λ3,j (j = 1, 2, 3) are
made, the corresponding bound states are also the BBS of the system. They satisfy all of the
three conditions and the coupling between the bulk and the impurities is antiferromagnetic.
When the coupling between the bulk and the impurities is ferromagnetic, the system has BBS
which can be formed by the three imaginary modes (equations (4–6)) or the five imaginary
modes (equations (8–12)) withSL,R < cL,R < SL,R +1/3. They have energies as described by
expressions (7) and (13). Of course, the corresponding imaginary modes with transformations
λ3,j = −λ3,j (j = 1, 2, 3) andλ5,l = −λ5,l (l = 1, 2, · · · , 5) form also the BBS of the
impurity model. When 1/3 +SL < cL < SL + 1/2 we have the BBS of equations (4–6) or the
inverse of the rapidities, and the exchange interaction between the bulk and the impurities is
ferromagnetic. Notice that the system may have other forms of the impurity bound states in
the above restricted range of the impurity couplingsJL,R. It is also an open problem to find out
the impurity bound states for other values of the impurity couplings for the strongly correlated
system.

The above discussion shows that the ferromagnetic and antiferromagnetic Heisenberg
spin chains with magnetic impurities always have BBS resulting from the impurities when
the strengths of the interactions between the bulk and the impurities are chosen properly.
These bound states carry real energy and the moments of the centres of the BBS are zero.
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They satisfy all three conditions of the imaginary modes. For the ferromagnetic Heisenberg
model where the coupling between the bulk and the impurities is ferromagnetic the system
has BBS formed by the three imaginary modes and the five imaginary modes of the spin
rapidities. When the coupling between the bulk and the impurities is antiferromagnetic, the
system has only BBS contained in the three imaginary modes of the rapidities. For the
antiferromagnetic Heisenberg model, the system has BBS formed by the three imaginary
modes and the five imaginary modes of the spin rapidities when the coupling between the
bulk and the impurities is antiferromagnetic. When the coupling between the bulk and the
impurities is ferromagnetic, the system has only the BBS contained in the three imaginary
modes of the rapidities. Kondo screening—as predicted by Furusaki and Nagaosa [2]—exists
for the antiferromagnetic Heisenberg model with ferromagnetic coupling between the bulk and
the impurities. At zero impurity couplings (JL,R = 0), the system has impurity bound states
(although trivial ones), which correspond to the 2SL,R+1 spin states of the impurity. By turning
on the boundary coupling, the BBS can be formed by the imaginary modes of the rapidities and
the number of BBS might change. The BBS can affect the ground state of the whole system
when the boundary coupling is strong enough; this is under investigation. New properties
of the specific heat, excited state, dressed energy, etc, can be introduced due to the impurity
couplings. We point out that similar BBS with three or five imaginary modes contributed by
the magnetic impurities can be found also for strongly correlated electron systems such as the
Hubbard model and thet−J model with open boundary conditions in the charge sectors. The
BBS carry energy and satisfy the three conditions of the imaginary modes. Finally, the way
the string affects the distribution of the rapidities is also the interesting subject for the further
investigation.

To conclude, we have found that BBS result from magnetic impurities in a correlated host
under open boundary conditions. These BBS are formed by three or five imaginary modes such
as charges or spins. The imaginary modes of the bound states due to the magnetic impurities
satisfy that: (i) the total energy is real; (ii) the total moment of the imaginary modes is real
(zero); (iii) the absolute values of the imaginary modes are different. These BBS carry energy
and are localized at the edges of the system. Kondo screening exists for the antiferromagnetic
Heisenberg model with ferromagnetic coupling between the bulk and the impurities.
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